Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

نویسندگان

  • Heather Strosnider
  • Caitlin Kennedy
  • Michele Monti
  • Fuyuen Yip
چکیده

PROBLEM/CONDITION The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. REPORTING PERIOD 2008-2012 for air quality and 2010-2015 for water quality. DESCRIPTION OF SYSTEM Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM2.5) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM2.5 (PM2.5 days); 2) mean annual average ambient concentrations of PM2.5 in micrograms per cubic meter (mean PM2.5); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. RESULTS Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM2.5 concentration decreased from 11.15 μg/m3 in large central metropolitan counties to 8.87 μg/m3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. INTERPRETATION Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. PUBLIC HEALTH ACTION Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Microbiological Quality of Rural and Urban Drinking Water in Distribution Systems of Ijroud, Zanjan in 2013-2015

Background: Providing safe drinking water has critical importance to human societies. The aim of this study was to investigate microbiological quality of drinking water in distribution system of urban and rural regions of Ijroud, in Zanjan province.   Materials and Methods: In present descriptive study, the microbiological examination of drinking water was conducted in 15 facilities with...

متن کامل

Analysis of the microbial quality in drinking water distribution networks using the logistic regression model in Dasht-e Azadegan county, an arid region in the southwest of Iran

The microbial quality of water plays a key role in community health. The present study aimed to determine the microbial quality of the drinking water distribution networks in the urban and rural areas of Dasht-e Azadegan County, Iran and assess the influential factors in the quality of drinking water.In this descriptive-analytical study, 907 drinking water samples were collected from the urban ...

متن کامل

بررسی کیفیت میکربی آب آشامیدنی روستاهای شهرستان سقز

Backgrounds and Objectives:Safe drinking water providing is one of the main purposes in the community. Development and improvement of community is related to the public health. In this study !we studied the bacteriological quality of 116 villages under coverage of the water and wastewater companies in rural areas of Saqqez in.1386Material and Methods:Drinking water of these rural areas have pro...

متن کامل

Examining Changes Trend of Fluoride Concentration in Groundwater Using Geo-Statistical Technique and Its Zoning in Geographic information system (GIS), Case Study: Drinking Water wells in Yazd-Ardakan Plain

Background and Objective: Studies have shown that the presence of standard amount of fluoride in drinking water can prevent tooth decay. Meanwhile, higher concentration than permitted amount in drinking water causes bone disease and dental fluorosis. Given the importance of fluoride in drinking water and also GIS ability in spatial analysis of various factors in the groundwater, in this study t...

متن کامل

Home Water Treatment Habits and Effectiveness in a Rural Arizona Community

Drinking water quality in the United States (US) is among the safest in the world. However, many residents, often in rural areas, rely on unregulated private wells or small municipal utilities for water needs. These utilities may violate the Safe Drinking Water Act contaminant guidelines, often because they lack the required financial resources. Residents may use alternative water sources or in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Morbidity and mortality weekly report. Surveillance summaries

دوره 66 13  شماره 

صفحات  -

تاریخ انتشار 2017